最新消息:20210816 当前crifan.com域名已被污染,为防止失联,请关注(页面右下角的)公众号

【未解决】Flask部署到线上生产环境后多实例多线程中无法共享全局变量

Flask crifan 2743浏览 0评论

折腾:

【已解决】Flask中ms的tts返回401感觉是获取token错误导致无法生成语音文件

虽然已经解决了Azure的获取token的问题了,但是此处又发现其他的问题:

Mac本地调试单个Flask的实例的时候,对于单个文件中,不同函数中共享全局变量的值:

resources/tts.py

<code>gMsToken = ""

def initAudioService():
    """
    init audio service related related:
        init token
    :return:
    """
    # log = app.logger
    log.info("initAudioService")
    createAudioTempFolder()

    # getBaiduToken()

    getAzureSpeechToken()
    log.info("Init audio service complete")

def getAzureSpeechToken():
    """get Microsoft Azure speech service token key"""
    # log = app.logger
    global gMsToken
    log.info("getAzureSpeechToken: gMsToken=%s", gMsToken)
    gMsToken = refreshAzureSpeechToken()
    log.info("after getAzureSpeechToken: gMsToken=%s", gMsToken)

def msTTS(unicodeText,
          voiceName=settings.MS_TTS_VOICE_NAME,
          voiceRate=settings.MS_TTS_VOICE_RATE,
          voiceVolume=settings.MS_TTS_VOICE_VOLUME):
    """call ms azure tts to generate audio(mp3/wav/...) from text"""
    global gMsToken
    # log = app.logger
    log.info("msTTS: unicodeText=%s, gMsToken=%s", unicodeText, gMsToken)

    if not gMsToken:
        getAzureSpeechToken()

    isOk = False
    audioBinData = None
    errNo = 0
    errMsg = "Unknown error"

    msTtsUrl = settings.MS_TTS_URL
    log.info("msTtsUrl=%s", msTtsUrl)
    reqHeaders = {
        "Content-Type": "application/ssml+xml",
        "X-Microsoft-OutputFormat": settings.MS_TTS_OUTPUT_FORMAT,
        "Ocp-Apim-Subscription-Key": settings.MS_TTS_SECRET_KEY,
        "Authorization": "Bear " + gMsToken
    }
    log.info("reqHeaders=%s", reqHeaders)
...
################################################################################
# Global Init
################################################################################

# testAudioSynthesis()
initAudioService()
log.info("TTS init complete")
</code>

其中的全局变量:gMsToken,用来保存ms的tts的token,

是可以正常工作的。

但是,在:

【未解决】在线环境中用gunicorn部署的产品demo无法正常初始化运行

把Flask通过gunicorn+supervisor部署到在线服务器的生产环境中后,由于多个实例和线程:

gunicorn的线程设置为cpu core个数 * 2 + 1,所以4核就是4×2+1=9个Flask的实例

然后从log中发现个问题:

<code>[2018-08-28 18:29:07,783 INFO tts.py:129 getAzureSpeechToken] getAzureSpeechToken: gMsToken=
[2018-08-28 18:29:07,998 INFO tts.py:131 getAzureSpeechToken] after getAzureSpeechToken: gMsToken=eyJhbGciOiJodHRwOi8vd3d3LnczLm9yZy8yMDAxLzA0L3htbGRzaWctbW9yZSNobWFjLXNoYTI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ1cm46bXMuY29nbml0aXZlc2VydmljZXMiLCJleHAiOiIxNTM1NDUyNzQ3IiwicmVnaW9uIjoid2VzdHVzIiwic3Vic2NyaXB0aW9uLWlkIjoiNzU5ZWE5MjcyZjhiNDdhMzg5MWVkYzQ5ODhhMmFkNDEiLCJwcm9kdWN0LWlkIjoiU3BlZWNoU2VydmljZXMuUzAiLCJjb2duaXRpdmUtc2VydmljZXMtZW5kcG9pbnQiOiJodHRwczovL2FwaS5jb2duaXRpdmUubWljcm9zb2Z0LmNvbS9pbnRlcm5hbC92MS4wLyIsImF6dXJlLXJlc291cmNlLWlkIjoiL3N1YnNjcmlwdGlvbnMvZDA1NWNjMjMtZDY5OS00YjAyLTg0YzgtMDBlOTVmNzA4ZDFmL3Jlc291cmNlR3JvdXBzL1NwZWVjaC9wcm92aWRlcnMvTWljcm9zb2Z0LkNvZ25pdGl2ZVNlcnZpY2VzL2FjY291bnRzL0F6dXJlLVNwZWVjaCIsInNjb3BlIjoic3BlZWNoc2VydmljZXMiLCJhdWQiOiJ1cm46bXMuc3BlZWNoc2VydmljZXMud2VzdHVzIn0.R8Zfe0YyPhzpe-QITjGmbpJuSP1tpa5elFG0YYPVAyM
[2018-08-28 18:29:07,999 INFO tts.py:123 initAudioService] Init audio service complete
[2018-08-28 18:29:08,000 INFO tts.py:439 &lt;module&gt;] TTS init complete
[2018-08-28 18:29:08,000 INFO qa.py:18 &lt;module&gt;] resourcesPath=/xxx/robotDemo/resources
[2018-08-28 18:29:08,072 INFO qa.py:26 &lt;module&gt;] aiContext=&lt;DialogueManager.Context object at 0x7f7eb0d6cbe0&gt;
[2018-08-28 18:29:08,197 INFO tts.py:131 getAzureSpeechToken] after getAzureSpeechToken: gMsToken=eyJhbGciOiJodHRwOi8vd3d3LnczLm9yZy8yMDAxLzA0L3htbGRzaWctbW9yZSNobWFjLXNoYTI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ1cm46bXMuY29nbml0aXZlc2VydmljZXMiLCJleHAiOiIxNTM1NDUyNzQ3IiwicmVnaW9uIjoid2VzdHVzIiwic3Vic2NyaXB0aW9uLWlkIjoiNzU5ZWE5MjcyZjhiNDdhMzg5MWVkYzQ5ODhhMmFkNDEiLCJwcm9kdWN0LWlkIjoiU3BlZWNoU2VydmljZXMuUzAiLCJjb2duaXRpdmUtc2VydmljZXMtZW5kcG9pbnQiOiJodHRwczovL2FwaS5jb2duaXRpdmUubWljcm9zb2Z0LmNvbS9pbnRlcm5hbC92MS4wLyIsImF6dXJlLXJlc291cmNlLWlkIjoiL3N1YnNjcmlwdGlvbnMvZDA1NWNjMjMtZDY5OS00YjAyLTg0YzgtMDBlOTVmNzA4ZDFmL3Jlc291cmNlR3JvdXBzL1NwZWVjaC9wcm92aWRlcnMvTWljcm9zb2Z0LkNvZ25pdGl2ZVNlcnZpY2VzL2FjY291bnRzL0F6dXJlLVNwZWVjaCIsInNjb3BlIjoic3BlZWNoc2VydmljZXMiLCJhdWQiOiJ1cm46bXMuc3BlZWNoc2VydmljZXMud2VzdHVzIn0.R8Zfe0YyPhzpe-QITjGmbpJuSP1tpa5elFG0YYPVAyM
[2018-08-28 18:29:08,198 INFO tts.py:123 initAudioService] Init audio service complete
[2018-08-28 18:29:08,198 INFO tts.py:439 &lt;module&gt;] TTS init complete
[2018-08-28 18:29:08,198 INFO qa.py:18 &lt;module&gt;] resourcesPath=/xxx/robotDemo/resources
[2018-08-28 18:29:08,265 INFO qa.py:26 &lt;module&gt;] aiContext=&lt;DialogueManager.Context object at 0x7f7eb0d69c50&gt;
[2018-08-28 18:29:08,434 INFO tts.py:131 getAzureSpeechToken] after getAzureSpeechToken: gMsToken=eyJhbGciOiJodHRwOi8vd3d3LnczLm9yZy8yMDAxLzA0L3htbGRzaWctbW9yZSNobWFjLXNoYTI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ1cm46bXMuY29nbml0aXZlc2VydmljZXMiLCJleHAiOiIxNTM1NDUyNzQ4IiwicmVnaW9uIjoid2VzdHVzIiwic3Vic2NyaXB0aW9uLWlkIjoiNzU5ZWE5MjcyZjhiNDdhMzg5MWVkYzQ5ODhhMmFkNDEiLCJwcm9kdWN0LWlkIjoiU3BlZWNoU2VydmljZXMuUzAiLCJjb2duaXRpdmUtc2VydmljZXMtZW5kcG9pbnQiOiJodHRwczovL2FwaS5jb2duaXRpdmUubWljcm9zb2Z0LmNvbS9pbnRlcm5hbC92MS4wLyIsImF6dXJlLXJlc291cmNlLWlkIjoiL3N1YnNjcmlwdGlvbnMvZDA1NWNjMjMtZDY5OS00YjAyLTg0YzgtMDBlOTVmNzA4ZDFmL3Jlc291cmNlR3JvdXBzL1NwZWVjaC9wcm92aWRlcnMvTWljcm9zb2Z0LkNvZ25pdGl2ZVNlcnZpY2VzL2FjY291bnRzL0F6dXJlLVNwZWVjaCIsInNjb3BlIjoic3BlZWNoc2VydmljZXMiLCJhdWQiOiJ1cm46bXMuc3BlZWNoc2VydmljZXMud2VzdHVzIn0.xAr4O88waREMaTgzPOt4s7J8yLglU4nnSwmaz01qavc
[2018-08-28 18:29:08,435 INFO tts.py:123 initAudioService] Init audio service complete
[2018-08-28 18:29:08,436 INFO tts.py:439 &lt;module&gt;] TTS init complete
[2018-08-28 18:29:08,436 INFO qa.py:18 &lt;module&gt;] resourcesPath=/xxx/robotDemo/resources
[2018-08-28 18:29:08,474 INFO tts.py:131 getAzureSpeechToken] after getAzureSpeechToken: gMsToken=eyJhbGcixxx4nnSwmaz01qavc
[2018-08-28 18:29:08,475 INFO tts.py:123 initAudioService] Init audio service complete
[2018-08-28 18:29:08,476 INFO tts.py:439 &lt;module&gt;] TTS init complete
[2018-08-28 18:29:08,476 INFO qa.py:18 &lt;module&gt;] resourcesPath=/xxx/robotDemo/resources
[2018-08-28 18:29:08,496 INFO tts.py:131 getAzureSpeechToken] after getAzureSpeechToken: gMsToken=eyJhbGcixxx4s7J8yLglU4nnSwmaz01qavc
[2018-08-28 18:29:08,497 INFO tts.py:123 initAudioService] Init audio service complete
[2018-08-28 18:29:08,497 INFO tts.py:439 &lt;module&gt;] TTS init complete
[2018-08-28 18:29:08,497 INFO qa.py:18 &lt;module&gt;] resourcesPath=/xxx/robotDemo/resources
[2018-08-28 18:29:08,512 INFO qa.py:26 &lt;module&gt;] aiContext=&lt;DialogueManager.Context object at 0x7f7eb0d68cc0&gt;
[2018-08-28 18:29:08,571 INFO qa.py:26 &lt;module&gt;] aiContext=&lt;DialogueManager.Context object at 0x7f7eb0d68da0&gt;
[2018-08-28 18:29:08,603 INFO qa.py:26 &lt;module&gt;] aiContext=&lt;DialogueManager.Context object at 0x7f7eb0d69d30&gt;
[2018-08-28 18:29:08,753 INFO tts.py:131 getAzureSpeechToken] after getAzureSpeechToken: gMsToken=None
[2018-08-28 18:29:08,755 INFO tts.py:123 initAudioService] Init audio service complete
[2018-08-28 18:29:08,755 INFO tts.py:439 &lt;module&gt;] TTS init complete
[2018-08-28 18:29:08,755 INFO qa.py:18 &lt;module&gt;] resourcesPath=/xxx/robotDemo/resources
[2018-08-28 18:29:08,822 INFO tts.py:131 getAzureSpeechToken] after getAzureSpeechToken: gMsToken=None
[2018-08-28 18:29:08,823 INFO tts.py:123 initAudioService] Init audio service complete
[2018-08-28 18:29:08,823 INFO tts.py:439 &lt;module&gt;] TTS init complete
[2018-08-28 18:29:08,824 INFO qa.py:18 &lt;module&gt;] resourcesPath=/xxx/robotDemo/resources
[2018-08-28 18:29:08,841 INFO qa.py:26 &lt;module&gt;] aiContext=&lt;DialogueManager.Context object at 0x7f7eb0d69e80&gt;
[2018-08-28 18:29:08,893 INFO qa.py:26 &lt;module&gt;] aiContext=&lt;DialogueManager.Context object at 0x7f7eb0d69ef0&gt;
[2018-08-28 18:29:08,998 INFO tts.py:131 getAzureSpeechToken] after getAzureSpeechToken: gMsToken=eyJhbGcixxxnSwmaz01qavc
[2018-08-28 18:29:08,999 INFO tts.py:123 initAudioService] Init audio service complete
[2018-08-28 18:29:09,000 INFO tts.py:439 &lt;module&gt;] TTS init complete
[2018-08-28 18:29:09,000 INFO qa.py:18 &lt;module&gt;] resourcesPath=/xxx/robotDemo/resources
[2018-08-28 18:29:09,129 INFO qa.py:26 &lt;module&gt;] aiContext=&lt;DialogueManager.Context object at 0x7f7eb0d69f60&gt;
[2018-08-28 18:29:09,132 INFO tts.py:131 getAzureSpeechToken] after getAzureSpeechToken: gMsToken=None
[2018-08-28 18:29:09,134 INFO tts.py:123 initAudioService] Init audio service complete
</code>

可见问题:

(1)其中有些gMsToken是有正常的值,有些是None

-》导致后续代码中msTTS中reqHeaders的gMsToken是None,无法正常使用ms的tss

(2)另外:本身(多个实例,多个进程中)去获取多个ms的token,本身也是浪费和不好的做法:

获取新的token -》导致刚刚获取的旧的token失效了

-》所以希望是:

能够多个线程,全局共享一个token

-》而在合并兜底对话期间,借鉴到别人的代码中:

nlp/search/qa/iqa.py

<code>class Singleton(type):
    """
    reference: https://stackoverflow.com/questions/31875/is-there-a-simple-elegant-way-to-define-singletons

    """

    _instances = {}

    def __call__(cls, *args, **kwargs):
        if cls not in cls._instances:
            cls._instances[cls] = super(
                Singleton, cls).__call__(*args, **kwargs)
        return cls._instances[cls]

class SearchBasedQA(metaclass=Singleton):

    static_bt = None
    ...
</code>

是可以通过singleton单例,去实现全局,多线程,多进程,共享一个变量或类的

所以后续去尝试去搞定:

Flask 部署后 多实例 全局变量的共享冲突/被覆盖的问题,

看看除了 单例singleton之外 是否还有其他更好的办法

不过还是先去看看:

【部分解决】Python中实现多线程或多进程中的单例singleton

然后优化后的,全局的,所有线程都共享一个实例,单例,去获取ms的azure的tts的token的代码是:

common/ThreadSafeSingleton.py

<code>import functools
import threading

thread_lock = threading.Lock()
print("ThreadSafeSingleton: thread_lock=%s" % thread_lock)

# refer: https://stackoverflow.com/questions/50566934/why-is-this-singleton-implementation-not-thread-safe

def synchronized(lock):
    """ Synchronization decorator """
    def wrapper(f):
        print("synchronized: wrapper: f=%s, lock=%s" % (f, lock))
        @functools.wraps(f)
        def inner_wrapper(*args, **kw):
            print("functools.wraps: args=%s, kw=%s" % (args, kw))
            with lock:
                return f(*args, **kw)
        print("inner_wrapper%s" % inner_wrapper)
        return inner_wrapper
    return wrapper


# class Singleton(type):
class ThreadSafeSingleton(type):
    _instances = {}

    @synchronized(thread_lock)
    def __call__(cls, *args, **kwargs):
        print("synchronized __call__: cls=%s, args=%s, kwargs=%s" % (cls, args, kwargs))
        print("cls._instances=%s" % cls._instances)
        if cls not in cls._instances:
            # cls._instances[cls] = super(Singleton, cls).__call__(*args, **kwargs)
            cls._instances[cls] = super(ThreadSafeSingleton, cls).__call__(*args, **kwargs)
            print("after added _instances: cls._instances=%s" % cls._instances)
        return cls._instances[cls]
</code>

然后在此期间,为了正常的能用上多线程的全局的单例的log,再去:

【已解决】把Flask中的app的logger改造成单例以避免循环引用和多次初始化Flask的实例

然后:

【部分解决】Python中实现多线程或多进程中的单例singleton

但是:

不过,对于此处的业务逻辑来说,倒是暂时可以继续试用的:

因为之前

gunicorn:多worker(9个),type时sync,导致多process

导致多个ms的token去初始化,其中部分(3)个token初始化有误

而现在改为:

gunicorn:单worker,type为gevent,的确是单process

虽然不知何故,flask的app中的log中还有3个process去初始化token,但是返回都是200,token都正常

-》后续调用ms的tts去文字转语音,暂时还是可以正常使用的。

转载请注明:在路上 » 【未解决】Flask部署到线上生产环境后多实例多线程中无法共享全局变量

发表我的评论
取消评论

表情

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址
82 queries in 0.188 seconds, using 22.14MB memory