对于我们之前分析的start.S中,涉及到很多的汇编的语句,其中,可以看出,很多包含了很多种不同的语法,使用惯例等,下面,就对此进行一些总结,借以实现一定的举一反三或者说触类旁通,这样,可以起到一定的借鉴功能,方便以后看其他类似汇编代码, 容易看懂汇编代码所要表达的含义。
像前面汇编代码中,有很多的,以点开头,加上一个名字的形式的标号,比如:
reset: /* * set the cpu to SVC32 mode */ mrs r0,cpsr
中的reset,就是汇编中的标号,相对来说,比较容易理解,就相当于C语言的标号。
比如,C语言中定义一个标号ERR_NODEV:
ERR_NODEV: /* no device error */ ... /* c code here */
然后对应在别处,使用goto去跳转到这个标号ERR_NODEV:
if (something) goto ERR_NODEV ;
【总结】 | |
---|---|
汇编中的标号 = C语言中的标号Label |
对应地,和上面的例子中的C语言中的编号和掉转到标号的goto类似,汇编中,对于定义了标号,那么也会有对应的指令,去跳转到对应的汇编中的标号。
这些跳转的指令,就是b指令,b是branch的缩写。
b指令的格式是:
b{cond} label
简单说就是跳转到label处。
用和上面的例子相关的代码来举例:
.globl _start _start: b reset
就是用b指令跳转到上面那个reset的标号。
【总结】 | |
---|---|
汇编中的b跳转指令 = C语言中的goto |
对于上面例子中:
.globl _start
中的.global,就是声明_start为全局变量/标号,可以供其他源文件所访问。
即汇编器,在编译此汇编代码的时候,会将此变量记下来,知道其是个全局变量,遇到其他文件是用到此变量的的时候,知道是访问这个全局变量的。
因此,从功能上来说,就相当于C语言用extern去生命一个变量,以实现本文件外部访问此变量。
【总结】 | |
---|---|
汇编中的.globl或.global = C语言中的extern |
和b指令类似的,另外还有一个bl指令,语法是:
BL{cond} label
其作用是,除了b指令跳转到label之外,在跳转之前,先把下一条指令地址存到lr寄存器中,以方便跳转到那边执行完毕后,将lr再赋值给pc,以实现函数返回,继续执行下面的指令的效果。
用下面这个start.S中的例子来说明:
bl cpu_init_crit ...... cpu_init_crit: ...... mov pc, lr
其中,就是先调用bl掉转到对应的标号cpu_init_crit,其实就是相当于一个函数了,
然后在cpu_init_crit部分,执行完毕后,最后调用 mov pc, lr,将lr中的值,赋给pc,即实现函数的返回原先 bl cpu_init_crit下面那条代码,继续执行函数。
上面的整个过程,用C语言表示的话,就相当于
...... cpu_init_crit(); ...... void cpu_init_crit(void) { ...... }
而关于C语言中,函数的跳转前后所要做的事情,都是C语言编译器帮我们实现好了,会将此C语言中的函数调用,转化为对应的汇编代码的。
其中,此处所说的,函数掉转前后所要做的事情,就是:
要将当前指令的下一条指令的地址,保存到lr寄存器中
将之前保存的lr的值给pc,实现函数跳转回来。继续执行下一条指令。
而如果你本身自己写汇编语言的话,那么这些函数跳转前后要做的事情,都是你程序员自己要关心,要实现的事情。
像前文所解析的代码中类似于这样的:
LABEL1:.word Value2
比如:
_TEXT_BASE: .word TEXT_BASE
所对应的含义是,有一个标号_TEXT_BASE
而该标号中对应的位置,所存放的是一个word的值,具体的数值是TEXT_BASE,此处的TEXT_BASE是在别处定义的一个宏,值是0x33D00000。
所以,即为:
有一个标号_TEXT_BASE,其对应的位置中,所存放的是一个word的值,值为
TEXT_BASE=0x33D00000
总的来说,此种用法的含义,如果用C语言来表示,其实更加容易理解:
int *_TEXT_BASE = TEXT_BASE = 0x33D00000
即:
int *_TEXT_BASE = 0x33D00000
【总结】 | |
---|---|
汇编中类似这样的代码: label1: .word value2 就相当于C语言中的: int *label1 = value2 但是在C语言中引用该标号/变量的时候,却是直接拿来用的,就像这样: label1 = other_value 其中label1就是个int型的变量。 |
接着上面的内容,继续解释,对于汇编中这样的代码:
第一种:
ldr pc, 标号1 ...... 标号1:.word 标号2 ...... 标号2: ......(具体要执行的代码)
或者是,
第二种:
ldr pc, 标号1 ...... 标号1:.word XXX(C语言中某个函数的函数名)
的意思就是,将地址为标号1中内容载入到pc中。
而地址为标号1中的内容,就是标号2。
TEXT_BASE=0x33D00000
所以上面第一种的意思:
就很容易看出来,就是把标号2这个地址值,给pc,即实现了跳转到标号2的位置执行代码,
就相当于调用一个函数,该函数名为标号2.
第二种的意思,和上面类似,是将C语言中某个函数的函数名,即某个地址值,给pc,实现调用C中对应的那个函数。
两种做法,其含义用C语言表达,其实很简单:
PC = *(标号1) = 标号2
例 3.1. 汇编中的ldr加标号实现函数调用 示例
举个例子就是:
第一种:
...... ldr pc, _software_interrupt ...... _software_interrupt: .word software_interrupt ...... software_interrupt: get_bad_stack bad_save_user_regs bl do_software_interrupt
就是实现了将标号1,_software_interrupt,对应的位置中的值,标号2,software_interrupt,给pc,即实现了将pc掉转到software_interrupt的位置,即实现了调用函数software_interrupt的效果。
第二种:
ldr pc, _start_armboot _start_armboot: .word start_armboot
含义就是,将标号1,_start_armboot,所对应的位置中的值,start_armboot给pc,即实现了调用函数start_armboot的目的。
其中,start_armboot是C语言文件中某个C语言的函数。
在汇编代码start.S中,看到不止一处, 类似于这样的代码:
形式1:
# define pWTCON 0x53000000 ...... ldr r0, =pWTCON mov r1, #0x0 str r1, [r0]
或者是,
形式2:
# define INTSUBMSK 0x4A00001C ...... ldr r1, =0x7fff ldr r0, =INTSUBMSK str r1, [r0]
其含义,都是将某个值,赋给某个地址,此处的地址,是用宏定义来定义的,对应着某个寄存器的地址。
其中,形式1是直接通过mov指令来将0这个值赋给r1寄存器,和形式2中的通过ldr伪指令来将0x3ff赋给r1寄存器,两者区别是,前者是因为已经确定所要赋的值0x0是mov的有效操作数,而后者对于0x3ff不确定是否是mov的有效操作数
警告 | |
---|---|
如果不是,则该指令无效,编译的时候,也无法通过编译,会出现类似于这样的错误:: start.S: Assembler messages: start.S:149: Error: invalid constant -- 'mov r1,#0xFFEFDFFF' make[1]: *** [start.o] 错误 1 make: *** [cpu/arm920t/start.o] 错误 2 |
所以才用ldr伪指令,让编译器来帮你自动判断:
例 3.2.
举例说明:
汇编代码:
# define pWTCON 0x53000000 ...... ldr r0, =pWTCON
被翻译后的真正的汇编代码:
33d00068: e3a00453 mov r0, #1392508928 ; 0x53000000
例 3.3.
举例说明:
汇编代码:
ldr r1, =0x7fff
被翻译后的真正的汇编代码:
33d00080: e59f13f8 ldr r1, [pc, #1016] ; 33d00480 <fiq+0x60> ...... 33d00480: 00007fff .word 0x00007fff
即把ldr伪指令翻译成真正的ldr指令,并且另外分配了一个word的地址空间用于存放该数值,然后用ldr指令将对应地址中的值载入,赋值给r1寄存器。