最新消息:20210816 当前crifan.com域名已被污染,为防止失联,请关注(页面右下角的)公众号

【整理】Python中的yield用法

Python crifan 3930浏览 0评论

1.看到这里提到了yield,然后就去找了找资料。

2.找到了个解释的比较清楚的:

Python yield 使用浅析

3.Python 2.7中的解释,摘录如下

5.2.10. Yield expressions
yield_atom       ::=  "(" yield_expression ")"
yield_expression ::=  "yield" [expression_list]

New in version 2.5.

The yield expression is only used when defining a generator function, and can only be used in the body of a function definition. Using a yield expression in a function definition is sufficient to cause that definition to create a generator function instead of a normal function.

When a generator function is called, it returns an iterator known as a generator. That generator then controls the execution of a generator function. The execution starts when one of the generator’s methods is called. At that time, the execution proceeds to the first yield expression, where it is suspended again, returning the value of expression_list to generator’s caller. By suspended we mean that all local state is retained, including the current bindings of local variables, the instruction pointer, and the internal evaluation stack. When the execution is resumed by calling one of the generator’s methods, the function can proceed exactly as if the yield expression was just another external call. The value of the yield expression after resuming depends on the method which resumed the execution.

All of this makes generator functions quite similar to coroutines; they yield multiple times, they have more than one entry point and their execution can be suspended. The only difference is that a generator function cannot control where should the execution continue after it yields; the control is always transferred to the generator’s caller.

The following generator’s methods can be used to control the execution of a generator function:

generator.next()

Starts the execution of a generator function or resumes it at the last executed yield expression. When a generator function is resumed with a next() method, the current yield expression always evaluates to None. The execution then continues to the next yield expression, where the generator is suspended again, and the value of the expression_list is returned to next()‘s caller. If the generator exits without yielding another value, a StopIteration exception is raised.

generator.send(value)

Resumes the execution and “sends” a value into the generator function. The value argument becomes the result of the current yield expression. The send() method returns the next value yielded by the generator, or raises StopIteration if the generator exits without yielding another value. When send() is called to start the generator, it must be called with None as the argument, because there is no yield expression that could receive the value.

generator.throw(type[, value[, traceback]])

Raises an exception of type type at the point where generator was paused, and returns the next value yielded by the generator function. If the generator exits without yielding another value, a StopIteration exception is raised. If the generator function does not catch the passed-in exception, or raises a different exception, then that exception propagates to the caller.

generator.close()

Raises a GeneratorExit at the point where the generator function was paused. If the generator function then raises StopIteration (by exiting normally, or due to already being closed) or GeneratorExit (by not catching the exception), close returns to its caller. If the generator yields a value, a RuntimeError is raised. If the generator raises any other exception, it is propagated to the caller. close() does nothing if the generator has already exited due to an exception or normal exit.

Here is a simple example that demonstrates the behavior of generators and generator functions:

>>> def echo(value=None):
...     print "Execution starts when 'next()' is called for the first time."
...     try:
...         while True:
...             try:
...                 value = (yield value)
...             except Exception, e:
...                 value = e
...     finally:
...         print "Don't forget to clean up when 'close()' is called."
...
>>> generator = echo(1)
>>> print generator.next()
Execution starts when 'next()' is called for the first time.
1
>>> print generator.next()
None
>>> print generator.send(2)
2
>>> generator.throw(TypeError, "spam")
TypeError('spam',)
>>> generator.close()
Don't forget to clean up when 'close()' is called.

See also

PEP 0342 – Coroutines via Enhanced Generators
The proposal to enhance the API and syntax of generators, making them usable as simple coroutines.

 

4.有空再折腾。

转载请注明:在路上 » 【整理】Python中的yield用法

发表我的评论
取消评论

表情

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址

网友最新评论 (1)

    85 queries in 0.190 seconds, using 22.13MB memory