三大看点 AMD Puma平台能否抗衡迅驰五?
如果说近几年来AMD与Intel在桌面市场的竞争还算是“分庭抗礼”的话,那么AMD在移动市场中的表现则相对要逊色一些。这一方面是因为Intel的“迅驰”平台确实在性能和功耗等方面有着出色的表现,另一方面也和AMD最近两年的新产品推出速度较慢有一定的关系。
在本文中,我们就将为您详细分析Puma平台和迅驰5平台各自的优势和不足,算是对这场即将掀起的平台大战做一个前瞻性分析。
· Puma平台的前身:Kite Refresh
实际上AMD在并购ATI后,于07年推出过自己的第一套移动平台,并将其命名为“Kite Refresh”。大家可能对它几乎没有任何印象,因为从命名上我们就可看出,这个平台更多地扮演的是一个尝试和过渡的角色——而且从技术角度来讲,它也确实没有太多亮点。
下面,我们就逐一来介绍Puma平台将带来的这些新技术,相信它们会令您有耳目一新的感觉。
· Griffin处理器是如何提升效能的?
“Griffin”是希腊神话里面的狮身鹫首的怪兽,这个代号暗示它具有狮子的强力和鹫的机动力。AMD的移动处理器一贯都是以桌面产品为基础开发,从K6时代到Turion 64 X2都是如此,但从Griffin开始AMD的移动处理器将走上独立道路。Griffin不再是对桌面处理器进行功耗控制的改良版,而是经过全新的设计,第一次作为以高效移动为目标的节能型处理器。同时,它们将会以“Turion Ultra”来命名。
AMD Puma | | |
处理器 | Griffin | Penryn |
芯片组 | RS780M | G45(Cantiga) |
无线模块 | 开放合作 | EchoPeak |
| DDR2-800 | DDR3-1066 |
闪存加速 | HyperFlash | Turbo Memory 2.0 |
集成显卡 | HD 2000 | GMA X4500 |
特色技术 | PowerXpress | 未知 |
128位SSE指令单元是Griffin的主要改进点之一,相对于64位SSE单元的Turion 64 X2,Griffin在SSE指令处理时可以获得双倍的多媒体效能,这将缩小它和Penryn处理器的差距。
整合内存控制器
Griffin并没有一成不变地沿用K10架构,而是从移动应用的需要出发对其进行设计上的裁剪。例如,K10架构的Barcelona配备了2MB的三级缓存,但Barcelona针对的是服务器应用,大缓存可以有效提升性能,而Puma平台专为办公、多媒体、互联网为主的移动应用设计,三级缓存对性能的提升颇为有限,成本和功耗的增加却颇为可观,因此Griffin没有配备三级缓存,而是选择对二级缓存扩充,令每个核心都独占1MB容量,这样Griffin的二级缓存总量提升到2MB,高于当前的Turion 64 X2。当然,Griffin在这一点上与3MB~6MB二级缓存的Penryn还存在相当的距离,毕竟45纳米Penryn的制造工艺比65纳米的Griffin领先了一代。
(注:加粗表示Griffin的改进点,加粗加红表示领先Intel的技术)
· Griffin处理器是如何降低功耗的?
· RS780M芯片组都有哪些新特性?
Radeon HD 2000集成了
Radeon HD 2000已原生支持HDCP和HDMI输出,为即将到来的蓝光/HD DVD播放作好了充分的准备,同时RS780M内建了两个显示控制器,除了支持常见的DVI、D-Sub、HDMI接口外,还可支持最新的DisplayPort输出。此外,它的另一个优点在于低功耗,这也将进一步改善Puma平台在发热和电池续航力方面的表现。
PowerXpress混合图形技术
这对矛盾在商用领域中尤显突出,过去索尼曾试图用双显卡的设计来解决问题,即同时配备集成图形与独立显卡,通过一个硬开关进行切换:在电池模式下采用集成图形,外接电源时则改用独立显卡。这种设计很好地解决了性能与电池时间的矛盾,但它的不足在于显卡的切换都要求先关闭系统,在关机状态下调整开关后再重启,用户的任务将被迫中断。
Puma平台的PowerXpress技术可彻底解决这一难题:PowerXpress允许RS780M的集成图形与外接显卡快速切换,如果用户拔掉电源依靠电池运行,那么PowerXpress技术会随即切换到集成显卡模式,独立显卡则被关闭,用户无需重启系统即可完成显卡转换。显然,PowerXpress技术完美地解决了图形性能与电池时间的矛盾,令笔记本电脑可以二者兼得,这项技术也让Puma增色不少,它的不足在于只能支持AMD的独立显卡,如果OEM厂商选择NVIDIA的移动GPU产品,PowerXpress技术便无法生效。
RS780M将与SB700南桥配合,SB700规格强悍,它提供了6个SATA II、一个并行ATA接口、14个USB接口、HD Audio高保真音频和多个2.0版的PCI Express X1接口,功能丝毫不逊色于英特尔的ICH9M。此外,SB700可支持一项名为“HyperFlash”的闪存加速技术,它与Intel Turbo Memory技术的区别在于:HyperFlash采用NAND闪存专用总线来挂接闪存模块,而Intel Turbo Memory则是采用PCI Express X1接口来挂接闪存模块,专用闪存总线可能具有更短的延迟,但估计与PCI Express X1接口的差距不会很大,实际加速效果主要取决于NAND模块本身的性能。
RS780M芯片组将采用先进的55纳米工艺制造,这意味着芯片组的功耗将进一步降低。事实上,在移动平台中,芯片组的能耗已是越来越不可忽视,如Santa Rosa平台的GM965芯片组功耗达14瓦,Merom Core 2 Duo处理器的功耗为31瓦,两者总计达到45瓦之多。AMD未披露RS780M的能耗指标,但现行RS690系列便以低功耗著称,所集成的Radeon HD 2000同样在功耗方面表现突出,加上55纳米制造工艺,预计RS780M芯片组的功耗指标能够令人感到满意。
· Puma平台:昙花一现还是分庭抗礼
尽管Griffin相比之前的AMD移动处理器进步明显,但相对Penryn来说或许还有一定差距,毕竟Penryn处理器拥有酷睿微架构、45纳米制造工艺和大容量二级缓存等诸多优势。不过,只要Puma平台能够保持一定的价格优势,相信仍然会获得不少消费者的青睐。
这种情况将在Puma平台中获得根本性的改变,AMD没有将Puma定位为高性能移动平台,而是走长效电池和性价比路线,以便它能够占领消费市场之余,进入到商用领域。这样,作为Puma平台的核心,Griffin处理器的节电特性就显得非常重要,AMD也为其引入前所未见的众多节能设计。
首先,Griffin处理器的处理内核与I/O组件(包括内存控制器、Crossbar和HT3总线)实现供电分离
Griffin的分离式供电设计很好地解决了这一问题,若显卡需要与内存交换数据,只需要唤醒Griffin中的I/O组件,两个CPU核心(或一个核心)都可以保持极低耗电的睡眠状态,这样就成功地避免了不必要的能源浪费。这项设计可以显著提升硬件多媒体解码(例如DVD回放)的电池性能,在这类应用中,GPU承担了绝大多数计算任务,而CPU可以一直保持在停步(IDLE)状态。当然,英特尔的Santa Rosa和Montevina平台就没有这样的困扰,因为它们都没有采用CPU整合内存控制器设计,显卡与内存交换数据与CPU无关。
除此之外,Griffin还增强了睡眠机制,它可支持Sleep(C3)、Deep Sleep(C4)两种睡眠状态(此时电压值为V4),其中C4省电模式为Griffin所新增——这项功能对电池时间影响极大,它所指的并不是操作系统的“睡眠”,而是在未操作状态下,CPU可以快速进入节电状态的能力,例如打字思考的间歇、网页静态浏览的时候,CPU都处于指令等待状态,此时系统可迫使CPU进入睡眠、深度睡眠状态,以达到节电效果,等到有动作时再快速恢复。
由于进入睡眠状态非常频繁,CPU可以借此节约大量的能源,而睡眠深度越高,节能效果就越突出。目前Intel最新的Penryn处理器已经拥有了C6模式,它可以将Penryn的核心电压降至其所采用制程技术的极限,在该状态下除了处理器停转外还将会关闭所有的高速缓存。而AMD也正在为Griffin研发C6睡眠机制,倘若C6可以在Griffin中获得采用,那么Griffin的节电技术完全可以同Penryn相媲美。
Griffin在节能方面比Penryn胜出的地方在于,两个核心的频率和电压可以被独立地控制,例如一个核心可以工作在V0电压的全频状态,另一个核心可工作在V1电压的低频状态,这种调节完全是根据任务所需动态进行,如果CPU只是处理单线程任务,那么另一个核心可以进入到深度睡眠的节能状态。尽管Santa Rosa平台也可以支持两个CPU核心的独立频率控制,但它们却无法对电压进行独立调整,因此在这一点上,Griffin具有更出色的能源效率,同时每个核心独立电压控制技术也是未来多核芯片的趋势所在。
从Merom开始,Intel为移动处理器引入分离式前端总线设计。在正常模式下,前端总线为64位,如果依靠电池运行,处理器的前端总线将降低为32位,以此降低总线部分的能耗。Griffin所采用的HT 3.0总线同样支持类似的机制,它提供了X16、X8、X4、X2和停止等5个状态,如果节能模式开启,Griffin会与配套的RS780M北桥协调,共同将总线的位宽降低,这样HT传输系统的能耗就可以被有效削减。值得一提的是,HT 3.0的总线位宽配置同样是根据传输任务需要动态进行,在基本不影响性能的条件下将总线能耗降到最低点。
Griffin的温度控制能力也获得很大程度的增强:每个CPU核心都被配置了热量传感器,同时Griffin的温控电路也可侦测内存系统的温度(要求在内存附近安装一个温度感应器),通过预先设定好的温度限制,Griffin处理器可以降低CPU与内存的频率和电压,从而达到降温的目的。这一功能不仅能够保证硬件的安全性,而且可以提高笔记本电脑的使用舒适度。
综上所述,我们认为Griffin处理器在节能方面确实有着显著的进步,这也令我们对Puma平台的电池续航时间有了更多的期待。
当然,Puma的进步并不仅仅是处理器组件,它在芯片组当中也融入了诸多新技术,下面我们就一起来了解一下。
转载请注明:在路上 » 三大看点 AMD Puma平台能否抗衡迅驰五?