摘要
/* ************************************************************************* * * Interrupt handling * ************************************************************************* */ @ @ IRQ stack frame. @ #define S_FRAME_SIZE 72 #define S_OLD_R0 68 #define S_PSR 64 #define S_PC 60 #define S_LR 56 #define S_SP 52 #define S_IP 48 #define S_FP 44 #define S_R10 40 #define S_R9 36 #define S_R8 32 #define S_R7 28 #define S_R6 24 #define S_R5 20 #define S_R4 16 #define S_R3 12 #define S_R2 8 #define S_R1 4 #define S_R0 0 #define MODE_SVC 0x13 #define I_BIT 0x80 /* * use bad_save_user_regs for abort/prefetch/undef/swi ... * use irq_save_user_regs / irq_restore_user_regs for IRQ/FIQ handling */ .macro bad_save_user_regs sub sp, sp, #S_FRAME_SIZE stmia sp, {r0 - r12} @ Calling r0-r12 ldr r2, _armboot_start
此处很简单,只是一些宏定义而已。 后面用到的时候再解释。 |
|
.macro和后面的.endm相对应,其语法是: 所以,此处就相当于一个无参数的宏bad_save_user_regs,也就相当于一个函数了。 |
|
即 sp = sp- S_FRAME_SIZE = sp - 72 |
|
stmia的语法为: 其中,条件域的具体含义如下: 更具体的含义:
所以,此行的含义是, 将r0到r12的值,一个个地传送到对应的地址上,基地址是sp的值,传完一个,sp的值加4,一直到传送完为止。 此处,可见,前面那行代码: sp = sp - 72 就是为此处传送r0到r12,共13个寄存器,地址空间需要13*4=72个字节, 即前面sp减去72,就是为了腾出空间,留此处将r0到r12的值,放到对应的位置的。 |
|
此处的含义就是,将_armboot_start中的值,参考前面内容,即为_start, 而_start的值: 从 Nor Flash启动时:_stat=0 relocate代码之后为:_start=TEXT_BASE=0x33D00000 此处是已经relocate代码了,所以应该理解为后者,即_start=0x33D00000 所以: r2=0x33D00000 |
sub r2, r2, #(CONFIG_STACKSIZE+CFG_MALLOC_LEN) sub r2, r2, #(CFG_GBL_DATA_SIZE+8) @ set base 2 words into abort stack ldmia r2, {r2 - r3} @ get pc, cpsr add r0, sp, #S_FRAME_SIZE @ restore sp_SVC add r5, sp, #S_SP mov r1, lr stmia r5, {r0 - r3} @ save sp_SVC, lr_SVC, pc, cpsr mov r0, sp .endm
此处: r2 = r2 - ( CONFIG_STACKSIZE+CFG_MALLOC_LEN) = r2 – (128*1024 + 256*1024) = 0x33D00000 - 384KB = 0x33CA0000 |
|
此处: r2 = r2 - (CFG_GBL_DATA_SIZE + 8) = 0x33CA0000 – (128 + 8) = 0x33C9FF78 |
|
分别将地址为r2和r2+4的内容,即地址为0x33C9FF78和0x33C9FF7C中的内容,load载入给r2和r3寄存器。 |
|
将sp的值,加上72,送给r0 |
|
前面的定义是: #define S_SP 52 所以此处就是将sp的值,加上52,送给r5 |
|
将lr给r1 |
|
然后将r0到r3中的内容,存储到地址为r5-r5+12中的位置去。 |
|
将sp再赋值给r0 |
|
结束宏bad_save_user_regs |
此处虽然每行代码基本看懂了,但是到底此bad_save_user_regs函数是做什么的,还是不太清楚,有待以后慢慢深入理解。
.macro irq_save_user_regs sub sp, sp, #S_FRAME_SIZE stmia sp, {r0 - r12} @ Calling r0-r12 add r8, sp, #S_PC stmdb r8, {sp, lr}^ @ Calling SP, LR str lr, [r8, #0] @ Save calling PC mrs r6, spsr str r6, [r8, #4] @ Save CPSR str r0, [r8, #8] @ Save OLD_R0 mov r0, sp .endm .macro irq_restore_user_regs ldmia sp, {r0 - lr}^ @ Calling r0 - lr mov r0, r0 ldr lr, [sp, #S_PC] @ Get PC add sp, sp, #S_FRAME_SIZE subs pc, lr, #4 @ return & move spsr_svc into cpsr .endm .macro get_bad_stack ldr r13, _armboot_start @ setup our mode stack sub r13, r13, #(CONFIG_STACKSIZE+CFG_MALLOC_LEN) sub r13, r13, #(CFG_GBL_DATA_SIZE+8) @ reserved a couple spots in abort stack str lr, [r13] @ save caller lr / spsr mrs lr, spsr str lr, [r13, #4] mov r13, #MODE_SVC @ prepare SVC-Mode @ msr spsr_c, r13 msr spsr, r13 mov lr, pc movs pc, lr .endm .macro get_irq_stack @ setup IRQ stack ldr sp, IRQ_STACK_START .endm .macro get_fiq_stack @ setup FIQ stack ldr sp, FIQ_STACK_START .endm
上面两段代码,基本上和前面很类似,虽然每一行都容易懂,但是整个两个函数的意思,除了看其宏的名字irq_save_user_regs和irq_restore_user_regs,分别对应着中断中,保存和恢复用户模式寄存器,之外,其他的,个人目前还是没有太多了解。 |
||||
此处的get_bad_stack被后面undefined_instruction,software_interrupt等处调用,目前能理解的意思是,在出错的时候,获得对应的堆栈的值。 |
||||
此处的含义很好理解,就是把地址为IRQ_STACK_START中的值赋值给sp。 即获得IRQ的堆栈的起始地址。 而对于IRQ_STACK_START,是前面就提到过的cpu_init源码 而此处,就是用到了,前面已经在cpu_init()中重新计算正确的值了。 即算出IRQ堆栈的起始地址,其算法很简单,就是: IRQ_STACK_START = _armboot_start - CFG_MALLOC_LEN - CFG_GBL_DATA_SIZE - 4; 即,先减去malloc预留的空间,和global data,即在
中定义的全局变量: DECLARE_GLOBAL_DATA_PTR; 而此宏对应的值在:
中: #define DECLARE_GLOBAL_DATA_PTR register volatile gd_t *gd asm ("r8") 即,用一个固定的寄存器r8来存放此结构体的指针。
此gd_t的结构体,不同体系结构,用的不一样。 而此处arm的平台中,gd_t的定义在同一文件中: typedef struct global_data { bd_t *bd; unsigned long flags; unsigned long baudrate; unsigned long have_console; /* serial_init() was called */ unsigned long reloc_off; /* Relocation Offset */ unsigned long env_addr; /* Address of Environment struct */ unsigned long env_valid; /* Checksum of Environment valid? */ unsigned long fb_base; /* base address of frame buffer */ #ifdef CONFIG_VFD unsigned char vfd_type; /* display type */ #endif #if 0 unsigned long cpu_clk; /* CPU clock in Hz! */ unsigned long bus_clk; unsigned long ram_size; /* RAM size */ unsigned long reset_status; /* reset status register at boot */ #endif void **jt; /* jump table */ } gd_t; 而此全局变量gd_t *gd会被其他很多文件所引用,详情自己去代码中找。 |
||||
此处和上面类似,把地址为FIQ_STACK_START中的内容,给sp。 其中: FIQ_STACK_START = IRQ_STACK_START - CONFIG_STACKSIZE_IRQ; 即FIQ的堆栈起始地址,是IRQ堆栈起始地址减去IRQ堆栈的大小。 |
/* * exception handlers */ .align 5 undefined_instruction: get_bad_stack bad_save_user_regs bl do_undefined_instruction .align 5 software_interrupt: get_bad_stack bad_save_user_regs bl do_software_interrupt .align 5 prefetch_abort: get_bad_stack bad_save_user_regs bl do_prefetch_abort .align 5 data_abort: get_bad_stack bad_save_user_regs bl do_data_abort .align 5 not_used: get_bad_stack bad_save_user_regs bl do_not_used
如果发生未定义指令异常,CPU会掉转到start.S开头中对应的位置: ldr pc, _undefined_instruction 即把地址为_undefined_instruction中的内容给pc,即跳转到此处执行对应的代码。 其做的事情依次是: 获得出错时候的堆栈 保存用户模式寄存器 跳转到对应的函数:do_undefined_instruction 而do_undefined_instruction函数是在:
中: void bad_mode (void) { panic ("Resetting CPU ...\n"); reset_cpu (0); } void do_undefined_instruction (struct pt_regs *pt_regs) { printf ("undefined instruction\n"); show_regs (pt_regs); bad_mode (); } 可以看到,此处起始啥事没错,只是打印一下出错时候的寄存器的值,然后跳转到bad_mode中取reset CPU,直接重启系统了。 |
|
以上几个宏,和前面的do_undefined_instruction是类似的,就不多说了。 |
@ HJ .globl Launch .align 4 Launch: mov r7, r0 @ diable interrupt @ disable watch dog timer mov r1, #0x53000000 mov r2, #0x0 str r2, [r1] ldr r1,=INTMSK ldr r2,=0xffffffff @ all interrupt disable str r2,[r1] ldr r1,=INTSUBMSK ldr r2,=0x7ff @ all sub interrupt disable str r2,[r1] ldr r1, = INTMOD mov r2, #0x0 @ set all interrupt as IRQ (not FIQ) str r2, [r1] @ mov ip, #0 mcr p15, 0, ip, c13, c0, 0 @ /* zero PID */ mcr p15, 0, ip, c7, c7, 0 @ /* invalidate I,D caches */ mcr p15, 0, ip, c7, c10, 4 @ /* drain write buffer */ mcr p15, 0, ip, c8, c7, 0 @ /* invalidate I,D TLBs */ mrc p15, 0, ip, c1, c0, 0 @ /* get control register */ bic ip, ip, #0x0001 @ /* disable MMU */ mcr p15, 0, ip, c1, c0, 0 @ /* write control register */ @ MMU_EnableICache @mrc p15,0,r1,c1,c0,0 @orr r1,r1,#(1<<12) @mcr p15,0,r1,c1,c0,0 #ifdef CONFIG_SURPORT_WINCE bl Wince_Port_Init #endif @ clear SDRAM: the end of free mem(has wince on it now) to the end of SDRAM ldr r3, FREE_RAM_END ldr r4, =PHYS_SDRAM_1+PHYS_SDRAM_1_SIZE @ must clear all the memory unused to zero mov r5, #0 ldr r1, _armboot_start ldr r2, =On_Steppingstone sub r2, r2, r1 mov pc, r2 On_Steppingstone: 2: stmia r3!, {r5} cmp r3, r4 bne 2b @ set sp = 0 on sys mode mov sp, #0 @ add by HJ, switch to SVC mode msr cpsr_c, #0xdf @ set the I-bit = 1, diable the IRQ interrupt msr cpsr_c, #0xd3 @ set the I-bit = 1, diable the IRQ interrupt ldr sp, =0x31ff5800 nop nop nop nop mov pc, r7 @ Jump to PhysicalAddress nop mov pc, lr
#ifdef CONFIG_USE_IRQ .align 5 irq: /* add by www.embedsky.net to use IRQ for USB and DMA */ sub lr, lr, #4 @ the return address ldr sp, IRQ_STACK_START @ the stack for irq stmdb sp!, { r0-r12,lr } @ save registers ldr lr, =int_return @ set the return addr ldr pc, =IRQ_Handle @ call the isr int_return: ldmia sp!, { r0-r12,pc }^ @ return from interrupt .align 5 fiq: get_fiq_stack /* someone ought to write a more effiction fiq_save_user_regs */ irq_save_user_regs bl do_fiq irq_restore_user_regs #else .align 5 irq: get_bad_stack bad_save_user_regs bl do_irq .align 5 fiq: get_bad_stack bad_save_user_regs bl do_fiq #endif
此处,做的事情,很容易看懂,就是中断发生后,掉转到这里,然后保存对应寄存器,然后跳转到对应irq函数IRQ_Handle中去。 但是前面为何sp为何去减去4,原因不太懂。 |
|
关于IRQ_Handle,是在:
中: void IRQ_Handle(void) { unsigned long oft = intregs->INTOFFSET; S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO(); // printk("IRQ_Handle: %d\n", oft); //清中断 if( oft == 4 ) gpio->EINTPEND = 1<<7; intregs->SRCPND = 1<<oft; intregs->INTPND = intregs->INTPND; /* run the isr */ isr_handle_array[oft](); } 此处细节就不多解释了,大体含义是,找到对应的中断源,然后调用对应的之前已经注册的中断服务函数ISR。 |
|
此处也很简单,就是发生了快速中断FIQ的时候,保存IRQ的用户模式寄存器,然后调用函数do_fiq,调用完毕后,再恢复IRQ的用户模式寄存器。 |
|
do_fiq()是在:
中: void do_fiq (struct pt_regs *pt_regs) { printf ("fast interrupt request\n"); show_regs (pt_regs); bad_mode (); } 和前面提到过的do_undefined_instruction的一样,就是打印寄存器信息,然后跳转到bad_mode()去重启CPU而已。 |
|
此处就是,如果没有定义CONFIG_USE_IRQ,那么就用这段代码,可以看到,都只是直接调用do_irq和do_fiq,也没做什么实际工作。 |