3.6. 为何C语言(的函数调用)需要堆栈,而汇编语言却不需要堆栈

之前看了很多关于uboot的分析,其中就有说要为C语言的运行,准备好堆栈。

而自己在Uboot的start.S汇编代码中,关于系统初始化,也看到有堆栈指针初始化这个动作。但是,从来只是看到有人说系统初始化要初始化堆栈,即正确给堆栈指针sp赋值,但是却从来没有看到有人解释,为何要初始化堆栈。所以,接下来的内容,就是经过一定的探究,试图来解释一下,为何要初始化堆栈,即:

为何C语言的函数调用要用到堆栈,而汇编却不需要初始化堆栈。

要明白这个问题,首先要了解堆栈的作用。

关于堆栈的作用,要详细讲解的话,要很长的篇幅,所以此处只是做简略介绍。

总的来说,堆栈的作用就是:保存现场/上下文,传递参数。

3.6.1. 保存现场/上下文

现场,意思就相当于案发现场,总有一些现场的情况,要记录下来的,否则被别人破坏掉之后,你就无法恢复现场了。而此处说的现场,就是指CPU运行的时候,用到了一些寄存器,比如r0,r1等等,对于这些寄存器的值,如果你不保存而直接跳转到子函数中去执行,那么很可能就被其破坏了,因为其函数执行也要用到这些寄存器。

因此,在函数调用之前,应该将这些寄存器等现场,暂时保持起来,等调用函数执行完毕返回后,再恢复现场。这样CPU就可以正确的继续执行了。

在计算机中,你常可以看到上下文这个词,对应的英文是context。那么:

3.6.1.1. 什么叫做上下文context

保存现场,也叫保存上下文。

上下文,英文叫做context,就是上面的文章,和下面的文章,即与你此刻,当前CPU运行有关系的内容,即那些你用到寄存器。所以,和上面的现场,是一个意思。

保存寄存器的值,一般用的是push指令,将对应的某些寄存器的值,一个个放到堆栈中,把对应的值压入到堆栈里面,即所谓的压栈

然后待被调用的子函数执行完毕的时候,再调用pop,把堆栈中的一个个的值,赋值给对应的那些你刚开始压栈时用到的寄存器,把对应的值从堆栈中弹出去,即所谓的出栈

其中保存的寄存器中,也包括lr的值(因为用bl指令进行跳转的话,那么之前的pc的值是存在lr中的),然后在子程序执行完毕的时候,再把堆栈中的lr的值pop出来,赋值给pc,这样就实现了子函数的正确的返回。

3.6.2. 传递参数

C语言进行函数调用的时候,常常会传递给被调用的函数一些参数,对于这些C语言级别的参数,被编译器翻译成汇编语言的时候,就要找个地方存放一下,并且让被调用的函数能够访问,否则就没发实现传递参数了。对于找个地方放一下,分两种情况。

一种情况是,本身传递的参数就很少,就可以通过寄存器传送参数。

因为在前面的保存现场的动作中,已经保存好了对应的寄存器的值,那么此时,这些寄存器就是空闲的,可以供我们使用的了,那就可以放参数,而参数少的情况下,就足够存放参数了,比如参数有2个,那么就用r0和r1存放即可。(关于参数1和参数2,具体哪个放在r0,哪个放在r1,就是和APCS中的“在函数调用之间传递/返回参数”相关了,APCS中会有详细的约定。感兴趣的自己去研究。)

但是如果参数太多,寄存器不够用,那么就得把多余的参数堆栈中了。

即,可以用堆栈来传递所有的或寄存器放不下的那些多余的参数。

3.6.3. 举例分析C语言函数调用是如何使用堆栈的

对于上面的解释的堆栈的作用显得有些抽象,此处再用例子来简单说明一下,就容易明白了:

用:

arm-inux-objdump –d u-boot > dump_u-boot.txt

可以得到dump_u-boot.txt文件。该文件就是中,包含了u-boot中的程序的可执行的汇编代码,其中我们可以看到C语言的函数的源代码,到底对应着那些汇编代码。

下面贴出两个函数的汇编代码,

一个是clock_init,另一个是与clock_init在同一C源文件中的,另外一个函数CopyCode2Ram

            
33d0091c <CopyCode2Ram>:
33d0091c:	e92d4070 	push	{r4, r5, r6, lr}1
33d00920:	e1a06000 	mov	r6, r0
33d00924:	e1a05001 	mov	r5, r1
33d00928:	e1a04002 	mov	r4, r2
33d0092c:	ebffffef 	bl	33d008f0 <bBootFrmNORFlash>2
... ...
33d00984:	ebffff14 	bl	33d005dc <nand_read_ll>
... ...
33d009a8:	e3a00000 	mov	r0, #0	; 0x03
33d009ac:	e8bd8070 	pop	{r4, r5, r6, pc}4

33d009b0 <clock_init>:
33d009b0:	e3a02313 	mov	r2, #1275068416	; 0x4c0000005
33d009b4:	e3a03005 	mov	r3, #5	; 0x5
33d009b8:	e5823014 	str	r3, [r2, #20]
... ...
33d009f8:	e1a0f00e 	mov	pc, lr6
            

1

此处就是我们所期望的,用push指令,保存了r4,r5,r以及lr。

用push去保存r4,r5,r6,那是因为所谓的保存现场,以后后续函数返回时候再恢复现场,

2

上述用push去保存lr,那是因为函数CopyCode2Ram里面在此处调用了bBootFrmNORFlash

以及也调用了nand_read_ll:

33d00984:	ebffff14 	bl	33d005dc <nand_read_ll>

也用到了bl指令,会改变我们最开始进入clock_init时候的lr的值,所以我们要用push也暂时保存起来。

3

把0赋值给r0寄存器,这个就是我们所谓返回值的传递,是通过r0寄存器的。

此处的返回值是0,也对应着C语言的源码中的“return 0”.

4

把之前push的值,给pop出来,还给对应的寄存器,其中最后一个是将开始push的lr的值,pop出来给赋给PC,因为实现了函数的返回。

5

可以看到此处是该函数第一行

其中没有我们所期望的push指令,没有去将一些寄存器的值放到堆栈中。这是因为,我们clock_init这部分的内容,所用到的r2,r3等寄存器,和前面调用clock_init之前所用到的寄存器r0,没有冲突,所以此处可以不用push去保存这类寄存器的值,不过有个寄存器要注意,那就是r14,即lr,其是在前面调用clock_init的时候,用的是bl指令,所以会自动把跳转时候的pc的值赋值给lr,所以也不需要push指令去将PC的值保存到堆栈中。

6

而此处是clock_init的代码的最后一行

就是我们常见的mov pc, lr,把lr的值,即之前保存的函数调用时候的PC值,赋值给现在的PC,这样就实现了函数的正确的返回,即返回到了函数调用时候下一个指令的位置。

这样CPU就可以继续执行原先函数内剩下那部分的代码了。

[提示] 对于使用哪个寄存器来传递返回值

当然你也可以用其他暂时空闲没有用到的寄存器来传递返回值,但是这些处理方式,本身是根据ARM的APCS的寄存器的使用的约定而设计的,你最好不要随便改变使用方式,最好还是按照其约定的来处理,这样程序更加符合规范。