Nand Flash物理特性上使得其数据读写过程中会发生一定几率的错误,所以要有个对应的错误检测和纠正的机制,于是才有此ECC,用于数据错误的检测与纠正。Nand Flash的ECC,常见的算法有海明码和BCH,这类算法的实现,可以是软件也可以是硬件。不同系统,根据自己的需求,采用对应的软件或者是硬件。
相对来说,硬件实现这类ECC算法,肯定要比软件速度要快,但是多加了对应的硬件部分,所以成本相对要高些。如果系统对于性能要求不是很高,那么可以采用软件实现这类ECC算法,但是由于增加了数据读取和写入前后要做的数据错误检测和纠错,所以性能相对要降低一些,即Nand Flash的读取和写入速度相对会有所影响。
其中,Linux中的软件实现ECC算法,即NAND_ECC_SOFT模式,就是用的对应的海明码。
而对于目前常见的MLC的Nand Flash来说,由于容量比较大,动辄2GB,4GB,8GB等,常用BCH算法。BCH算法,相对来说,算法比较复杂。
笔者由于水平有限,目前仍未完全搞懂BCH算法的原理。
BCH算法,通常是由对应的Nand Flash的Controller中,包含对应的硬件BCH ECC模块,实现了BCH算法,而作为软件方面,需要在读取数据后,写入数据之前,分别操作对应BCH相关的寄存器,设置成BCH模式,然后读取对应的BCH状态寄存器,得知是否有错误,和生成的BCH校验码,用于写入。
其具体代码是如何操作这些寄存器的,由于是和具体的硬件,具体的nand flash的controller不同而不同,无法用同一的代码。如果你是nand flash驱动开发者,自然会得到对应的起nand flash的controller部分的datasheet,按照手册说明,去操作即可。
不过,额外说明一下的是,关于BCH算法,往往是要从专门的做软件算法的厂家购买的,但是Micron之前在网上放出一个免费版本的BCH算法。
想要此免费的BCH算法,可以在[18]找到下载地址